
A method for reconstructing

equilibrium energetic particle

distributions from NUBEAM

Josh Breslau and Guoyong Fu

CEMM Meeting

May 1, 2011

Austin, TX

Outline
A. NUBEAM output

B. M3DK, NOVA-K needs

C. Workflow

1. Random sampling

2. Coordinate conversion

3. Construction of Jacobian

4. Orbit classification

5. Binning

6. Smoothing

7. Splining

D. Examples of spline reconstruction

E. Future Work

NUBEAM

Kinetic Energy (eV) = v||/v

- Monte Carlo code for 2D time dependent simulation of fast ion species.

- Handles energetic ions from beam injection or fusion reactions.

- Includes guiding center drift orbiting, collisional, and atomic physics effects.

- Works in tandem with transport codes evolving axisymmetric MHD equilibria.

E.g., coupling to TSC through the SWIM Integrated Plasma Simulator for

NSTX shot 124379, collecting particle data into 4D bins for output:

Kinetic Codes

• NOVA-K computes the modification to ideal linear MHD growth rate

due to the energetic particle population.

• M3D-K combines a gyrokinetic f energetic particle advance with an

extended MHD fluid advance for the bulk plasma in nonlinear time-

dependent hybrid simulations.

• Both codes are initialized with analytic particle distributions with a small

number of free parameters. Initialization from more realistic distributions

computed by NUBEAM could improve the accuracy of their calculations.

• These kinetic codes need the distribution function in terms of three

constants of the motion, with the fourth dimension eliminated. The

function must be smooth enough to allow derivatives to be taken with

respect to energy and toroidal angular momentum.

get_fbm: NTCC Utility for sampling

4D distribution function
% get_fbm @cdf_read.ind (sample size = 10,000,000)

180,000 particles shown

Transform to 3D Coordinates
 , , , , ,F R z E f P E

Convert (R,z) to meters, E to Joules.

Then transform using

 ||

(,)
,

,

B R z
P eA mv R e R z mv R

B R z

2

||

21
2

1

,

v
E

vmv

B B R z

Utility part2dist reads particle data, IPS plasma state, uses plasma state

interpolation routines to get , B, performs transform.

Jacobian of the Transform
Over any region of phase space,

Procedure:

• Generate a population of ~20 million particles in phase space such that R2,

z, v
2, and v|| are uniform random deviates, within the same range as the

NUBEAM distribution.

• Transform coordinates to constants-of-motion space.

• Bin, smooth.

 3 3, , , , , , , , ,x y zF x y z v v v d xd v f P E P E dP d dE

An exact analytic form for cannot be derived simply as it requires integration

over all phase space orbits. A Monte Carlo approach is used, based on the

observation that the transform of a uniform distribution in Euclidean phase

space is proportional to the inverse of the Jacobian in the new space.

E

||
/ 2

E B
v

m

 Cases:
Only the negative root is

consistent with the

constants of motion:

particle is co-passing.

Only the positive root is

consistent with the

constants of motion:

particle is counter-

passing.

Positive and negative

roots on outboard side

are both consistent with

the constants of motion:

particle is trapped (in a

banana orbit).

Multiple solutions are

consistent with the

constants of motion:

additional information

on the sign of v|| is

needed to resolve orbit

type.

Ambiguity in P:

All plots are along midplane.

Constructing f(P,,E) with fitEjac
• Divide the 10,000,000 particles into subsets according to orbit type and sort each

subset by magnetic moment. Divide them into several subpopulations of either equal

width in or equal particle count.

• Sort the particles in each subpopulation into a number of bins in the P and E

directions, chosen to preserve information but minimize noise.

• Remove lost particles, defined as bins containing a single particle with neighbors

containing none.

• Apply Gaussian smoothing in both directions.

• Multiply by smoothed, binned Jacobian.

• Fit 2D cubic B-splines to the smoothed data using gsl routines, with uniform knots and

a number of coefficients in each direction approximately 5/8 the number of bins.

• Store the spline coefficients in a file. Utility routines have been developed to read the

spline data file and perform quick spline and derivative interpolations at arbitrary points in

the domain. (Linear interpolation is performed in).

Basis Splines
Given a nondecreasing knot vector

 0 1 1, ,..., n kt t t t

there are n basis splines of order k on the interval, defined recursively by

 1

,1

1,

0, otherwise

i i

i

t x t
B x

 , , 1 1, 1

1 1

i i k
i k i k i k

i k i i k i

x t t x
B x B x B x

t t t t

for i=0,…,n-1. For cubic B-splines, k=4. For an arbitrary function represented at

at least n+1 discrete data points, linear least squares fitting can be used to solve

for the ci in

1

,4

0

.
n

i i

i

f x c B x

High-Occupancy Bin Fits Are Good

P = E = 1.334

>0 Bin 1/25: 1,043,794 particles

Gradients match as well

f

P

f

E

Low-Occupancy Fits are Adequate
<0 Bin 24/25: 1,208 particles

Gradients are Smoothed

f

P

f

E

Reconstruction Routines
Fortran Interface:
pspline_init_()

Reads particle spline coefficients from text file, initializes data structures to
store them. Returns number of bins for each orbit type.

getpsplinebounds_()

Returns upper and lower bounds of particle distribution function space in each
of the three constants of motion P , , E. (For E, min|E/|=Bmin sets the lower
bound.)

getpdf_()

Returns normalized ft (P , , E), where t is the orbit type (co, counter, or
trapped).

getpdfd_()

Returns normalized ft (P , , E), ft /P , and ft /E.

pspline_free_()

Frees up all storage associated with particle spline data structures.

Future Work

• Refine choices of particles/bin, smoothing kernel, uniformity of knots, splines/bin.

• Find better constraints for nonnegative spline values in fit.

• Improve accuracy of derivative around confined/lost boundary.

• Integrate sampling, coordinate conversion, Jacobian calculation, binning, and spline

fitting components into a single utility.

• Test results in M3D-K

• Add flexibility for output to other SWIM codes.

